BanderasNews
Puerto Vallarta Weather Report
Welcome to Puerto Vallarta's liveliest website!
Contact UsSearch
Why Vallarta?Vallarta WeddingsRestaurantsWeatherPhoto GalleriesToday's EventsMaps
 NEWS/HOME
 EDITORIALS
 ENTERTAINMENT
 VALLARTA LIVING
 PV REAL ESTATE
 TRAVEL / OUTDOORS
 HEALTH / BEAUTY
 SALON & SPA SERVICES
 HEALTH FOR WOMEN
 HEALTH FOR MEN
 DENTAL HEALTH
 ON ADDICTION
 RESOURCES
 SPORTS
 DAZED & CONFUSED
 PHOTOGRAPHY
 CLASSIFIEDS
 READERS CORNER
 BANDERAS NEWS TEAM
Sign up NOW!

Free Newsletter!
Puerto Vallarta News NetworkHealth & Beauty | November 2007 

Intriguing Approach to Developing Treatments for Chagas Disease Found
email this pageprint this pageemail usScienceDaily
go to original



Chagas disease, named for Carlos Chagas, the Brazilian doctor who first described the disease in 1909, is caused by Trypanosoma cruzi,a flagellate protozoan parasite. This organism belongs to the taxonomic family Trypanosomatidae within the order Kinetoplastida. It exhibits a high level of intraspecific variation, making it a difficult disease for scientists to battle.
Mexican researchers highlight a novel approach to discovering drugs for Chagas disease in a laboratory study reported in PLoS Neglected Tropical Diseases.

Chagas disease, caused by the parasite Trypanosoma cruzi, affects about 18 million people in the American continent. Unfortunately, there is no satisfactory treatment for the disease: the existing drugs have severe side effects, require long courses of treatment, and show variable effectiveness.

In the new study, Armando Gómez-Puyou (Universidad Nacional Autonoma de Mexico, Mexico City) and colleagues report results of their search for molecules that could eliminate the parasite. Their work targets an enzyme in the parasite called triosephosphate isomerase.

One of the problems with identifying molecules that attack parasitic enzymes is that most of these enzymes have a counterpart in the human host-and so the molecule may also attack the human enzyme (causing side effects in humans). But triosephosphate isomerase, which has two subunits, holds promise as a possible target because the human form differs from the parasitic form. Armando Gómez-Puyou and colleagues found significance differences in the interface between the two subunits in triosephosphate isomerase from Homo sapiens and that from Trypanosoma cruzi. They therefore searched for molecules that could specifically disrupt this interface in the parasitic form of the enzyme but not the human form.

In their search, they discovered that dithiodianiline (DTDA) is far more effective at inactivating the parasitic form of the enzyme than the human form, and its detrimental effect is due to it perturbing the interface between the two subunits.

By targeting this interface, the researchers say, "it is possible to discover small molecules that selectively thwart the life of the parasite."

Citation: Olivares-Illana V, Rodríguez-Romero A, Becker I, Berzunza M, García J, et al. (2007) Perturbation of the Dimer Interface of Triosephosphate Isomerase and its Effect on Trypanosoma cruzi.

Adapted from materials provided by Public Library of Science



In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving
the included information for research and educational purposes • m3 © 2008 BanderasNews ® all rights reserved • carpe aestus